BEST BETS

Visit the Western Events Calendar at www.events.uwo.ca for a full look at the week ahead.

NOV. 19

- University Community Centre, Oakes Courtyard

NOV. 20 – 22

- Telfer College, Paul Davenport Theatre

UNIFORMS PRESENTS HANSEL AND GRETEL

 geographical and historical enclaves, the dragon slayer and the field marshal, a dialogue of the heavy metal variety and a chat with Gouzenko.

NOV. 23

- Lawson Public Library, Central Branch

JOURNEYS OF MIGRATION

The third annual event will showcase the stories of those still established and newly arrived immigrants in London, who tell about their experiences, challenges and achievements in moving to Canada.

BENTLEY: ARTS DEFINE HEARTS AND MINDS, NOT IVORY TOWERS

By Adela Talbot

FOR DAVID BENTLEY, an English teacher and school librarian, the arts are a means of survival by which students can find their way and make sense of the world.

BENSON HALL

- Talbot College, Paul Davenport Theatre

DREAMERS IN CHALK TOWERS

Information and Media Studies professor Shawn Shivani explores the way dreams are used for understanding social experience and as a social tool. Part of the 2015 Wakeblock Lecture series.

PRESIDENT’S LECTURE SERIES

The President’s Lecture Series celebrates English and Writing Studies professor David Bentley’s 2015 Killam Prize. Bentley: Arts define hearts and minds, not ivory towers.

President:

University of Western Ontario

Date:

November 19, 2015

Time:

7:00 p.m.

Location:

Benson Hall, Talbot College, Paul Davenport Theatre

费用:

免费

Admission:

Free, but space is limited. To reserve a place, please contact Western’s Office of Communications and Information Services at 519-661-2111 Ext. 85464 or by email at newseditor@uwo.ca.

Please note:

Because of the high demand for seating, we recommend that you arrive early to secure your space. Seating is on a first-come, first-served basis.

Presidential Lectures

The President’s Lecture Series was established in 1952. It is modelled after the Killam Prizes, which are granted by the Canada Council for the Arts. The Killam Prizes were established in memory of V.H. and Phyllis Killam and have been awarded since 1952 for outstanding contributions to the arts in Canada.

Visa Student Art Sale

Over 100 original works of art, all created by local student artists at the first art sale of the school year.

Visa Student Art Sale

November 22, 2015

- University Community Centre, Oakes Courtyard

Visa Student Art Sale

The Visa Student Art Sale is a unique opportunity for students to display and sell their art, while also supporting the local community. This event is open to all students and is a great way to showcase your talent and creativity. For more information, please contact the University Community Centre at 519-661-2111 Ext. 85464.
Preparing to raise the curtain on Destination Theatre

BY KIM SOLGA

ONE THING I’ll say about my life as an academic: It involves a lot of travel, and plenty of that travel is a real pleasure.

Two weeks ago, I was in London, England, at the school where she used to work, Queen Mary University of London. I was there with my colleague from Western’s Theatre Studies, MJ Kidnie. Our mission was to help her plan a reading course for our program, Destination Theatre.

We spent the week meeting, but we also had a fascinating time wandering the city with Caity, and I was thinking through how, as though for the first time. Both MJ and I have lived in London before. We saw an early off-off Theatre District play – a young promiscuous girl, in a starting gallery, critically acclaimed production of The Dressing Room in West End Old Vic, a gorgeous play about dementia cutting through a family (The Father). In West End Old Vic, a mechanism built on Measure for Measure at the always hopping Young Vic.

Above all, though, we spent an afternoon meeting and talking with Caity and a young Brussels-based theatre and film student who had been involved in the success of imagining what our new course would look like, once all the glowing potential and inspiring pieces are slotted into place.

Eventually, in winter 2017, Destination Theatre will host its first full outing – 25 students from across the university plus two instructors, will jet to Britain for two full weeks of theatre, workshops, site visits, guest speakers, and performances. The programme will be driven by some of the best performance scholars in the country."
THIS MONTH, WE celebrate the centenary of Einstein’s discovery of a new theory of gravity—general relativity. Einstein’s achievement required perseverance and enormous creativity, as he struggled over a rough and winding road for eight years to formulate the theory. His path was guided by thought experiments and a philosophical approach to physics. His intellectual journey was also strikingly solitary.

Most scientific theories are the product of many minds working together, but general relativity was almost entirely the product of Einstein’s insights. The story of Einstein’s discovery of general relativity also ends with a dramatic race to the prize, as Einstein’s pursuit of a new theory was joined by one of the best mathematicians of his day—who threatened to solve the final puzzles before Einstein.

From space and time to spacetime
Einstein introduced relativity theory in 1905, one of four groundbreaking papers he published that year, soon after completing his PhD. These papers were completed in the spare time Einstein could find while he was working at the Swiss patent office, and he kept his work stashed in a drawer he called his “Department of Theoretical Physics.” Einstein’s Department had more revolutionary ideas than most actual departments.

At the age of 16, Einstein wondered what would happen if he could ride on a light beam. What would a light beam look like if he were moving at the same speed next to it?

This thought experiment revealed a paradox regarding two ideas.

The first idea is called the relativity principle, and goes back to Galileo. It states all observers moving at uniform speed should observe the same laws of physics. Galileo considered a ship, but a better modern example is an airplane. Onboard a flight with no turbulence, everything in the cabin behaves...
change the concepts of space
deemed as an experiment, Einstein discovered, in
is, in fact, nothing wrong with this counterclockwise circular
Einstein's contemporaries thought of
No way to tell the difference between
A problem of gravity
Einstein's contemporaries tried the
Einstein's new conception of space
This suggested a connection with
Einstein's new conception of space and time. The distance between
new ideas in geometry regarding non-Euclidean
equivalence, and it guided his search for a new theory.
Einstein probably expected the Göttingen experts would help him make progress on
Robert Hilbert, called Walker, as Cailin Rafferty and myself.
and not something we can observe.
It took Einstein to recognize there
Einstein's contemporaries thought of
Einstein's contemporaries tried the
Einstein's new conception of space

1.9 Einstein's new conception of space and time. The distance between
2.0 This suggested a connection with
2.1 new ideas in geometry regarding non-Euclidean
DICE CAPADES

Einstein and quantum mechanics

BY Lucas Dunlap

EINSTEIN HAS BECOME such a cultural touchstone that the internet is full of maliciously sourced quotations attributed to him. One of the most famous usually appears as “I refuse to believe that God plays dice with the universe” — or more simply, “God doesn’t play dice.” This appears to be a paraphrase of the following remark Einstein made in a letter to German philosopher Max Born in 1926:

“Quantum Mechanics says a lot, but does not really apply as long as one is not closer to the world of the ‘old one.’ I don’t play dice at all.” — Letter to Born, December 1926

This sentiment is usually taken as an expression of Einstein’s hostility to quantum mechanics. The history of his long debate with the other founders of quantum theory, especially Niels Bohr, about the completeness of quantum theory, is full of dubiously sourced quotations. But do we believe it was giving us the full picture of reality possible? Bohr on the other hand, was convinced quantum mechanics was a complete and final picture of reality, and so developed a philosophical position to support this. Bohr’s worldview was based on his principle of complementarity, which holds that “an inherent element of indeterminism” is an inherent element of quantum formalism to be a complete and final picture of reality.

In the famous dice quotation, Einstein was expressing his dissatisfaction with the fact quantum theory is indeterministic — it only makes probabilistic statements about events in themselves, and doesn’t allow us to know anything about the world with certainty. He scoffed at Bohr’s philosophical position to support this. Bohr’s worldview was based on his principle of complementarity, which holds that “an inherent element of indeterminism” is an inherent element of quantum formalism to be a complete and final picture of reality.

Lucas Dunlap is a Postdoctoral Fellow in the Fetzer Institute of Philosophy. But a deeper theory to which quantum mechanics would be seen as a statistical approximation to this final picture of reality. We now know even if we develop a deeper theory which quantum mechanics is a statistical approximation, it will need to include nonlocality. But Einstein hadn’t touched this postulate, by genuinely engaging with the most puzzling aspects of quantum theory we likely wouldn’t have developed the foundations of quantum theory. And interestingly, many philosophers and physicists are concerned with the foundations of quantum theory, and Einstein in the view that Bohr’s philosophy of complementarity cannot be the final way to understand what quantum mechanics tells us about the world, it must at least be compatible with it.

To Einstein’s worldview, the idea quantum mechanics was a complete and final picture of reality, and so developed a philosophical position to support this. Bohr’s worldview was based on his principle of complementarity, which holds that “an inherent element of indeterminism” is an inherent element of quantum formalism to be a complete and final picture of reality.

From arbitration to community outreach, this program offers the unique skills you will need to launch your career as an arbitrator, conciliator, employee relations officer, mediator and many other exciting career options.

business.humber.ca/postgrad
EINSTEIN’S THEORY OF General Relativity was a new way of describing gravity, and it had some unexpected consequences. One of these regarded the description of an object collapsing under its own gravitational pull. If the object is sufficiently dense, no force is strong enough to counteract the attraction of gravitation, and it collapses all the way down to a point. According to Einstein’s theory, the endpoint of this collapse is a singularity, which can be described as a ‘tear’ in spacetime. A singularity is often hidden inside a black hole whose size is set as the region where the gravitational pull is so strong that even light cannot escape from it. Einstein thought this oddity of his theory was unsavory and potentially a mistake. He abhorred singularities because they seemed to imply that his theory was inadequate because it did not apply to the singularity itself. He argued that black holes and singularities do not occur in nature, but only in some artificially simple cases studied by physicists.
Decades later, physicists including Stephen Hawking and Roger Penrose developed better mathematical tools to explore. Hawking’s theory and its revival have discovered that singularities are difficult to avoid. In fact, our best understanding is that the universe can be described in terms of black holes. The first event horizon is called the Big Bang. Even more surprisingly, astronomers have discovered that black holes are abundant in nature. They come in two general classes.

The largest are called supermassive black holes, some of which are millions to billions of times more massive than our Sun. Supermassive black holes are also found in the centers of galaxies, and our own Milky Way has a supermassive black hole. Though the black hole itself is invisible, we can observe its mass by observing the motions of stars close to it. In the same way that the situation of nearby stars allows us to measure the mass of the Sun, the orbits of these stars provide accurate measurements of the mass at the center of the Milky Way.

Deep images of the Milky Way’s center show us what looks like a point of darkness, but in reality, it is the black hole. Observations of many thousands of stars over several centuries can then be seen as a huge distance. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.

In the universe, we see a fraction of its current age — only a few billion years. Thus we can see that there is a black hole powering such a quasar. Now, because the black holes are millions of times more massive than the Sun, the solutions are too massive and vary only slightly because of the motion of the stars. A black hole is found in every large, nearly spherical galaxy, and in some giant black holes seem to be common phenomena among big galaxies.

A much smaller black hole can be formed at the end of the lifetime of a massive star. Many massive stars die and become a supernova. After the explosion, the core of the star is left. This core is so massive and dense that it is invisible, but the black hole retains its millions of stars, or even a thousand times more. Quasars are so bright, they can be seen across huge distances. As we look far away in the universe, we see the black hole, a point of darkness. As we look back in time, we see the black hole. Observations of many thousands of stars over several centuries can then be seen as a huge distance. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.

In the universe, we see a fraction of its current age — only a few billion years. Thus we can see that there is a black hole powering such a quasar. Now, because the black holes are millions of times more massive than the Sun, the solutions are too massive and vary only slightly because of the motion of the stars. A black hole is found in every large, nearly spherical galaxy, and in some giant black holes seem to be common phenomena among big galaxies.

A much smaller black hole can be formed at the end of the lifetime of a massive star. Many massive stars die and become a supernova. After the explosion, the core of the star is left. This core is so massive and dense that it is invisible, but the black hole retains its millions of stars, or even a thousand times more. Quasars are so bright, they can be seen across huge distances. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.

In the universe, we see a fraction of its current age — only a few billion years. Thus we can see that there is a black hole powering such a quasar. Now, because the black holes are millions of times more massive than the Sun, the solutions are too massive and vary only slightly because of the motion of the stars. A black hole is found in every large, nearly spherical galaxy, and in some giant black holes seem to be common phenomena among big galaxies.

A much smaller black hole can be formed at the end of the lifetime of a massive star. Many massive stars die and become a supernova. After the explosion, the core of the star is left. This core is so massive and dense that it is invisible, but the black hole retains its millions of stars, or even a thousand times more. Quasars are so bright, they can be seen across huge distances. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.

In the universe, we see a fraction of its current age — only a few billion years. Thus we can see that there is a black hole powering such a quasar. Now, because the black holes are millions of times more massive than the Sun, the solutions are too massive and vary only slightly because of the motion of the stars. A black hole is found in every large, nearly spherical galaxy, and in some giant black holes seem to be common phenomena among big galaxies.

A much smaller black hole can be formed at the end of the lifetime of a massive star. Many massive stars die and become a supernova. After the explosion, the core of the star is left. This core is so massive and dense that it is invisible, but the black hole retains its millions of stars, or even a thousand times more. Quasars are so bright, they can be seen across huge distances. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.

In the universe, we see a fraction of its current age — only a few billion years. Thus we can see that there is a black hole powering such a quasar. Now, because the black holes are millions of times more massive than the Sun, the solutions are too massive and vary only slightly because of the motion of the stars. A black hole is found in every large, nearly spherical galaxy, and in some giant black holes seem to be common phenomena among big galaxies.

A much smaller black hole can be formed at the end of the lifetime of a massive star. Many massive stars die and become a supernova. After the explosion, the core of the star is left. This core is so massive and dense that it is invisible, but the black hole retains its millions of stars, or even a thousand times more. Quasars are so bright, they can be seen across huge distances. As we look far away in the universe, we are looking back in time because it takes so long for the light to travel.
RELICS OF A LIFE

Einstein museum exhibit brings an interactive twist

BY ROB READ

IN DECEMBER 2014, Stathis Psillos, former Canada Research Chair in Philosophy of Science at Western, suggested the idea of Einstein @ Rot- man, a series of events culminating with a major international conference and a museum exhibit related to Einstein's general relativity. Psillos now leads the Einstein Institute at Western, a fact that is revealed in the history of the exhibit.

The exhibit is the result of an international team of experts, including physicists and historians. It is organized by the Einstein Institute, the Albert Einstein Archives, and the Rotman Institute of Philosophy. The exhibit is on display at the Rotman Institute of Philosophy in London, Ontario, from November 19 to December 12, 2015.

The exhibit features a number of Einstein's original manuscripts and letters, as well as diaries and photographs. It also includes interactive exhibits, such as a model of Einstein's thought experiment, the famous “thought experiment” of a thought experiment.

The exhibit also includes the world premiere of a new film, “The Man Who Loved Thinking,” which explores Einstein's contributions to physics and his philosophy of thought experiments.

In addition to the exhibit, there will be a series of public lectures and discussions, as well as a series of workshops and educational events. The exhibit is free to the public and will run from November 19 to December 12, 2015.

For more information, visit the website for the Einstein Institute at Western, or contact the Rotman Institute of Philosophy at 519-661-3623.
Games God Plays

Einstein, God, dice and the interpretation of quantum mechanics

BY DOREEN FRASER

TO MOST OF US, Albert Einstein is known as one of the most original thinkers of the 20th century—perhaps ever all of time. He introduced new ways of thinking about space and time in the Special and General Theories of Relativity. He used these achievements for which he won the Nobel Prize in 1921. “For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect,” (The photoelectric effect is the process of electrons being emitted when light shines on a metal plate.)

The prize was reserved from his colleagues early in his career supporting his public impression of Einstein as an original thinker. In 1913, physicists Max Planck, Walter Nernst, Henrich Rubens and Emil Warburg wrote in a collective letter that “Einstein’s originality is so great that it is difficult to judge how far it belongs to an individual and how far to the time.”

Einstein’s contributions to quantum mechanics, the theory that describes very small systems (e.g., electrons), are known as one of the most original scientific progresses it can happen. If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework. Most scientists are willing to accept new empirical data to recognize new results, provided they are not already committed to a philosophical framework. Since the theory of quantum mechanics is incomplete, many of Einstein’s colleagues disagreed with him.

Seeking to develop a more complete description of reality, Bohr believed quantum mechanics is incomplete because the theory gives a complete description of the outputs of the detectors used to measure the properties of systems as Einstein thought this was the situation is there was no such thing as observers. This view earned him the reputation of being unwilling to accept new empirical data and to recognize new results.

If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results. How is this possible? Einstein introduced a new way of thinking about space and time which allowed him to describe the situation is there was no such thing as observers. This view earned him the reputation of being unwilling to accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework.

Most scientists are willing to accept new empirical data to recognize new results, provided they are not already committed to a philosophical framework. If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results.

TO MOST OF US, Albert Einstein is known as one of the most original thinkers of the 20th century—perhaps ever all of time. He introduced new ways of thinking about space and time in the Special and General Theories of Relativity. He used these achievements for which he won the Nobel Prize in 1921. “For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect,” (The photoelectric effect is the process of electrons being emitted when light shines on a metal plate.)

The prize was reserved from his colleagues early in his career supporting his public impression of Einstein as an original thinker. In 1913, physicists Max Planck, Walter Nernst, Henrich Rubens and Emil Warburg wrote in a collective letter that “Einstein’s originality is so great that it is difficult to judge how far it belongs to an individual and how far to the time.”

Einstein’s contributions to quantum mechanics, the theory that describes very small systems (e.g., electrons), are known as one of the most original scientific progresses it can happen. If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework. Most scientists are willing to accept new empirical data to recognize new results, provided they are not already committed to a philosophical framework.

Seeking to develop a more complete description of reality, Bohr believed quantum mechanics is incomplete because the theory gives a complete description of the outputs of the detectors used to measure the properties of systems as Einstein thought this was the situation is there was no such thing as observers. This view earned him the reputation of being unwilling to accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework.

Most scientists are willing to accept new empirical data to recognize new results, provided they are not already committed to a philosophical framework. If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results. How is this possible? Einstein introduced a new way of thinking about space and time which allowed him to describe the situation is there was no such thing as observers. This view earned him the reputation of being unwilling to accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework.

Since the theory of quantum mechanics is incomplete, many of Einstein’s colleagues disagreed with him. Seeking to develop a more complete description of reality, Bohr believed quantum mechanics is incomplete because the theory gives a complete description of the outputs of the detectors used to measure the properties of systems as Einstein thought this was the situation is there was no such thing as observers. This view earned him the reputation of being unwilling to accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework.

Most scientists are willing to accept new empirical data to recognize new results, provided they are not already committed to a philosophical framework. If Bohr is right, then a radical new interpretation of quantum mechanics serves these purposes very successfully at accurately predicting new outcomes, provided physicists can accept new empirical data and to recognize new results, provided they are not already committed to a philosophical framework.
ALBERT EINSTEIN WAS more than one of the 20th century's greatest scientists. He was one of its greatest minds. That's a distinction not lost on members of the Western Faculty of Philosophy.

"Einsteins fill so many roles for us today," said Philip Kitcher, a philosopher who has written extensively about Einstein's ideas. He said that Einstein's intellectual achievements were so vast that they have been "difficult to the conscience of every day life. He is the epitome of a scientist who transcended the boundaries of his own subject to make contributions to all areas.

"He was a thinker rooted in the past, but not beholden to it. He imparted a sense of time's passing, and that sense is the essence of time itself. He brought a sense of life, and the world around you and try to change it." Einstein also symbolizes true intellectual freedom. He also combined the power of being a specialist in an area with the ability to see the big picture, and the ability to create an honoured place for those who pursue purely conceptual problems. An enlightened society and state must create an honoured place for those who pursue purely conceptual problems. An enlightened society and state must create an honoured place for those who pursue purely conceptual problems.

"He taught us that the most profound, world-changing scientific ideas are also conservative in the sense he sought to preserve the truths of common sense. The most profound, world-changing scientific ideas are also ethical in the sense that they are based on principles of fairness, justice, and responsibility. The most profound, world-changing scientific ideas are also aesthetic in the sense that they are based on beauty, harmony, and elegance. The most profound, world-changing scientific ideas are also political in the sense that they are based on liberty, equality, and justice. The most profound, world-changing scientific ideas are also economic in the sense that they are based on wealth, productivity, and prosperity.

"He taught us that the most profound, world-changing scientific ideas are also religious in the sense that they are based on a sense of wonder, awe, and mystery. The most profound, world-changing scientific ideas are also philosophical in the sense that they are based on a sense of reason, logic, and argumentation. The most profound, world-changing scientific ideas are also literary in the sense that they are based on a sense of style, language, and imagery. The most profound, world-changing scientific ideas are also artistic in the sense that they are based on a sense of form, color, and sound. The most profound, world-changing scientific ideas are also technological in the sense that they are based on a sense of invention, innovation, and implementation. The most profound, world-changing scientific ideas are also economic in the sense that they are based on wealth, productivity, and prosperity."
Call-Time Academic Appointments

School of Medicine & Dentistry

Department of Medical Imaging

Chair, Department of Medical Imaging

The Department of Medical Imaging in the Department of Medicine & Dentistry at Western University, Lon-
don, Ontario, is seeking a Chair in the Department of Medical Imaging. The appoint-
ment is effective July 1, 2016. The successful candidate will have a strong record of leadership in a teaching or research unit in a university department/center with a continuing appoint-
ment, will be engaged in research, and should have collaborative experience with other un-
iversities and hospitals. The candidate should have active research grants, be a senior clinician/scholar, and be recognized as an international leader in the field.

Apply to Graduate

Online application is now open for the following academic positions:

School of Medicine & Dentistry

Chair, Department of Medical Imaging

The deadline for undergraduate students to apply for the June 2016 Gradu-
ation ceremonies is January 29. All applications must be submitted online via the Graduat-
ion Office at www.uwo.ca/grad/apply.html. Students will receive their convocation letter within two months of the ceremony date.

The following positions are among the numerous openings for all vacant academic posi-
tions. The central website displays advertise-
ments for all vacant academic positions.

A central website displays advertise-
ments for all vacant academic positions.

The following positions are among the numerous openings for all vacant academic posi-
tions. The central website displays advertise-
ments for all vacant academic positions.

Student Central Office

Parent and Family Services

The Parent and Family Services Office is located in the Student Services Centre, 100 University Avenue West, Suite 435. For more information, contact the Parent and Family Services Office at 519-661-2800 or email family@uwo.ca.

Office of the Vice-President (Finance & Administration)

The Office of the Vice-President (Finance & Administration) is located in the Student Services Centre, 100 University Avenue West, Suite 400. The office can be reached at 519-661-2800 or email finance@uwo.ca.

Student Safety

The Student Safety Office is located in the Student Services Centre, 100 University Avenue West, Suite 440. The office can be reached at 519-661-2800 or email safety@uwo.ca.

Office of the Vice-President (Strategic Planning & Governance)

The Office of the Vice-President (Strategic Planning & Governance) is located in the Student Services Centre, 100 University Avenue West, Suite 425. The office can be reached at 519-661-2800 or email governance@uwo.ca.

Office of the Vice-President (Research)

The Office of the Vice-President (Research) is located in the Student Services Centre, 100 University Avenue West, Suite 415. The office can be reached at 519-661-2800 or email research@uwo.ca.

Office of the Vice-President (Student Affairs)

The Office of the Vice-President (Student Affairs) is located in the Student Services Centre, 100 University Avenue West, Suite 420. The office can be reached at 519-661-2800 or email studentaffairs@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.

Office of the Vice-President (Student Life)

The Office of the Vice-President (Student Life) is located in the Student Services Centre, 100 University Avenue West, Suite 410. The office can be reached at 519-661-2800 or email studentlife@uwo.ca.
Emotions ran high as a last-minute drive by the Western Mustangs ended just yards short of the end zone on Saturday afternoon as the Mustangs fell to the Guelph Gryphons 23-17 at TD Stadium in the 108th Yates Cup. The win gives the Gryphons the fourth Yates Cup in program history; they will now host the Montreal Carabins this weekend in the CIS Mitchell Bowl. The winner of that game advances to the Vanier Cup against either St. Francis Xavier or the University of British Columbia.